Exploring the limits of soft x-ray magnetic holography: Imaging magnetization reversal of buried interfaces (invited)
Journal of Applied Physics, ISSN: 0021-8979, Vol: 109, Issue: 7
2011
- 10Citations
- 23Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
Only a very few experimental techniques can address the microscopic magnetization reversal behavior of the different magnetic layers in a multilayered system with element selectivity. We present an element-selective study of ferromagnetic (FM) [Co/Pt] multilayers with perpendicular anisotropy exchange-coupled to antiferromagnetic (AFM) FeMn and IrMn films performed with a new experimental set-up developed for both soft x-ray spectroscopy and holography imaging purposes. The spectroscopy analysis allows the quantification of the unpinned (pinned) uncompensated AFM moments, providing direct evidence of its parallel (antiparallel) alignment with respect to the FM moments. The holography experiments give a direct view of both FM and uncompensated AFM magnetic structures, showing that they replicate to each other during magnetization reversal. Remarkably, we show magnetic images for effective thicknesses as small as one monolayer. Our results provide new microscopic insights into the exchange coupling phenomena and explore the sensitivity limits of these techniques. Future trends are also discussed. © 2011 American Institute of Physics.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know