Stark effect and excitonic tunneling escape process in semiconductor quantum wells
Journal of Applied Physics, ISSN: 0021-8979, Vol: 76, Issue: 9, Page: 4983-4988
1994
- 7Citations
- 10Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this work, we have numerically integrated in space and time the effective mass Schrödinger equation for an exciton in a semiconductor quantum-well structure. Considering a Coulomb interaction between the electron-hole pair and an external electric field, we have studied the excitonic tunneling escape process from semiconductor quantum wells. Our method of calculation has been applied to types-I, -II, and -III quantum-well superlattices. In addition, we present the calculated excitonic lifetimes for the GaAs/GaAlAs, InAs/GaSb, and HgTe/HgCdTe systems under an external electric field. In the HgTe/CdTe system, the possibility of having similar electron and hole lifetime values is also found if the applied electric field is large enough.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know