Substrate temperature dependence of homoepitaxial growth of Si using mass selected ion beam deposition
Journal of Applied Physics, ISSN: 0021-8979, Vol: 76, Issue: 7, Page: 4383-4389
1994
- 16Citations
- 2Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Homoepitaxy of silicon at low temperature has been achieved using low-energy mass selected silicon ion beams. Reflection high-energy electron diffraction and Rutherford backscattering spectrometry have been utilized to assess the quality of silicon films deposited from 15 eV Si beams in the temperature range of 50-350°C. Auger electron spectroscopy was used to monitor the contaminant levels on the surfaces. The films deposited at 350°C are epitaxial and of a quality near that of the original substrate. The growth rate at 350°C is ≊200 times faster than that for solid phase epitaxy. At 50 and 200°C layer-by-layer epitaxial growth was inhibited and evidence for formation of three-dimensional islands in the early stage of growth followed by transition to an amorphous phase was observed. The transition to an amorphous phase occurred at lower film thickness (smaller ion dose) for lower temperatures. It is shown that small amounts of N impurity in the Si beam, sufficient to add 1.4 at. % N to the silicon film, result in amorphous films, even at the highest temperature used, 350°C. The effects of substrate temperature, contamination, and surface damage on the growth mechanism are discussed.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know