Thin film contact resistance with dissimilar materials
Journal of Applied Physics, ISSN: 0021-8979, Vol: 109, Issue: 12
2011
- 28Citations
- 22Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This paper presents results of thin film contact resistance with dissimilar materials. The model assumes arbitrary resistivity ratios and aspect ratios between contact members, for both Cartesian and cylindrical geometries. It is found that the contact resistance is insensitive to the resistivity ratio for a/h <1, but is rather sensitive to the resistivity ratio for a/h <1 where a is the constriction size and h is film thickness. Various limiting cases are studied and validated with known results. Accurate analytical scaling laws are constructed for the contact resistance over a large range of aspect ratios and resistivity ratios. Typically the minimum contact resistance is realized with a/h ∼ 1, for both Cartesian and cylindrical cases. Electric field patterns are presented, showing the crowding of the field lines in the contact region. © 2011 American Institute of Physics.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know