Diffusion at the Al/Al oxide interface during electromigration in wide lines
Journal of Applied Physics, ISSN: 0021-8979, Vol: 79, Issue: 6, Page: 3003-3010
1996
- 9Citations
- 3Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Significant large-scale modification of the surface of Al-Si conductors was observed, due to electromigration in wide lines and under low stress conditions. After electromigration stressing the Al layers showed local thickness variations, i.e., damage by thinning. The mechanism underlying this damage causes substantial metal transport. Nevertheless, damage by thinning has received little attention in the past. Thinning was observed: (1) in a number of different alloys (Al-Si, Al-Cu, Ai-Si-V, and Al-Si-V-Pd), (2) with a number of different underlayers [SiO, W-Ti (no vacuum break after Al deposition) and W-Ti (oxidized surface before Al deposition)], (3) over an extended temperature range, (4) over a range of current density, and (5) in structures with and without passivation. The results show that thinning is a general phenomenon. An activation energy of approximately 0.5 eV was determined for the temperature dependence of a combined mechanism of concurrent thinning plus voiding in AlSi. Several alternatives are examined to explain the observations, namely mass movement along dislocations, Al bulk diffusion, and diffusion at the interface between the Al and its oxide. It is shown that diffusion at the Al/Al oxide interface most probably plays an important role in the damage mechanism, even under stress conditions where grain boundary diffusion is traditionally thought to dominate. Results also showed that alloying of Al with Pd can reduce the effects of damage by thinning. © 1996 American Institute of Physics.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=0011255953&origin=inward; http://dx.doi.org/10.1063/1.362653; https://pubs.aip.org/jap/article/79/6/3003/2086/Diffusion-at-the-Al-Al-oxide-interface-during; http://aip.scitation.org/doi/10.1063/1.362653; https://aip.scitation.org/action/captchaChallenge?redirectUrl=https%3A%2F%2Faip.scitation.org%2Fdoi%2F10.1063%2F1.362653
AIP Publishing
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know