Hybrid density functional theory study of band gap tuning in AlN and GaN through equibiaxial strains
Applied Physics Letters, ISSN: 0003-6951, Vol: 100, Issue: 2
2012
- 45Citations
- 15Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Structural transformation and the variation in the band gap of (0001) AlN and GaN films as a function of equibiaxial in-plane strain are studied using the HSE06 range-separated hybrid functional. Although AlN and GaN under strain share the same structural transition from wurtzite to a graphitelike phase, their electronic properties are significantly different. Both wurtzite and graphitelike AlN under strain can display either direct or indirect band structures, whereas the band gap of wurtzite GaN is always direct and graphitelike GaN always indirect. Furthermore, it is more difficult for AlN than GaN to obtain the graphitelike semi-metallic phase. Our results for GaN support the conclusions obtained from standard density functional theory [Dong, Appl. Phys. Lett. 96, 202106 (2010)] © 2012 American Institute of Physics.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know