Hybrid simulations of metal particle nucleation: A priori and a posteriori analyses of the effects of unresolved scalar interactions on nanoparticle nucleation
Physics of Fluids, ISSN: 1070-6631, Vol: 24, Issue: 7
2012
- 10Citations
- 14Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The effects of turbulence on nanoparticle nucleation are studied using a combination of fully resolved and large-scale quantities from direct numerical simulations. Growth of these particles is considered by Brownian coagulation. Three simulations are performed using a single Reynolds number and vapor mass fraction. In addition to the direct numerical simulation, we perform hybrid simulations in which fluid, thermal, and scalar transport are fully resolved, while the thermo-chemical variables used in predicting nanoparticle nucleation are filtered. This allows us to elucidate the effects of the unresolved or sub-grid scale (SGS) scalars on the formation of metal particles. The results show that the saturation ratio-representative of the driving force towards particle nucleation-is over-predicted when the SGS interactions are neglected. This results in increased nucleation-particle formation occurs both further upstream and at greater rates. While the SGS interactions act to both increase and decrease particle formation, the tendency to decrease nucleation is dominant. © 2012 American Institute of Physics.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know