Spin wave localization and softening in rod-shaped magnonic crystals with different terminations
Journal of Applied Physics, ISSN: 0021-8979, Vol: 112, Issue: 3
2012
- 7Citations
- 8Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The spin dynamics of simple cubic arrays of magnetic dipoles with the shape of elongated prisms is investigated in dependence of their terminations (flat or cusp) and of the applied field. We used two different calculation approaches: in the first, we solve the Landau-Lisfshits equation of motion of planar arrangements of magnetic dipoles; the static magnetization of the array is supposed to be uniform along the direction of the applied field, and the calculated modes have nodal planes perpendicular to the magnetization. In the second approach, we use the dynamical matrix method, which is a micromagnetic method, considers the exact (non-uniform) magnetic equilibrium configuration, and returns the complete set of magnetic eigenvalues/eigenmodes. Calculations show the existence of modes with different localization: low frequency modes, localized at the prism ends, and high frequency bulk modes, including the fundamental or quasi-uniform mode. We studied the internal field profile as a function of the termination details, the localization of spin modes, in particular of the lowest frequency mode, and the space resolved density of states. Finally, we address the soft modes of these systems, showing their frequency vs. applied field behavior in relation to the discontinuity of the magnetization curve, and investigating the symmetry transfer from the soft mode profile to the static magnetization, with possible applications. © 2012 American Institute of Physics.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know