Exploiting time-independent Hamiltonian structure as controls for manipulating quantum dynamics
Journal of Chemical Physics, ISSN: 0021-9606, Vol: 137, Issue: 9, Page: 094109
2012
- 4Citations
- 4Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The opportunities offered by utilizing time-independent Hamiltonian structure as controls are explored for manipulating quantum dynamics. Two scenarios are investigated using different manifestations of Hamiltonian structure to illustrate the generality of the concept. In scenario I, optimally shaped electrostatic potentials are generated to flexibly control electron scattering in a two-dimensional subsurface plane of a semiconductor. A simulation is performed showing the utility of optimally setting the individual voltages applied to a multi-pixel surface gate array in order to produce a spatially inhomogeneous potential within the subsurface scattering plane. The coherent constructive and destructive electron wave interferences are manipulated by optimally adjusting the potential shapes to alter the scattering patterns. In scenario II, molecular vibrational wave packets are controlled by means of optimally selecting the Hamiltonian structure in cooperation with an applied field. As an illustration of the concept, a collection (i.e., a level set) of dipole functions is identified where each member serves with the same applied electric field to produce the desired final transition probability. The level set algorithm additionally found Hamiltonian structure controls exhibiting desirable physical properties. The prospects of utilizing the applied field and Hamiltonian structure simultaneously as controls is also explored. The control scenarios I and II indicate the gains offered by algorithmically guided molecular or material discovery for manipulating quantum dynamics phenomenon. © 2012 American Institute of Physics.
Bibliographic Details
AIP Publishing
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know