Evolution of axisymmetric weakly turbulent mixtures interacting with shock or rarefaction waves
Physics of Fluids, ISSN: 1070-6631, Vol: 24, Issue: 11
2012
- 9Citations
- 5Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This paper deals with the interaction of a shock or a rarefaction wave with a weakly turbulent mixture of perfect gases. Assuming weak density-velocity fluctuations, Kovasznay decomposition applies and linear theories can be used to predict the evolution of the joint spectrum of density and velocity during the interaction. In this work, the upstream spectrum is restricted to axisymmetric fields free of acoustic perturbations, in order to comply with shock tube experimental conditions. Besides, spectral anisotropy is limited to a first order spherical harmonic decomposition. With these assumptions, transfer matrices can be obtained which relate the Reynolds stresses, turbulent mass flux and density variance after interaction to their counterparts before interaction. Results are given for both shock waves and rarefaction or compression waves; they are intended to help improve one-point statistical turbulence models applied to shock tube experiments. © 2012 American Institute of Physics.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know