Harnessing second-order optical nonlinearities at interfaces in multilayer silicon-oxy-nitride waveguides
Applied Physics Letters, ISSN: 0003-6951, Vol: 102, Issue: 6
2013
- 7Citations
- 23Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We demonstrate multi-layer silicon-oxy-nitride (SiON) waveguides as a platform for broadband tunable phase-matching of second-order nonlinear interactions arising at material interfaces. Second-harmonic generation (SHG) is measured with a 2 ps pulsed pump of 1515-1535 nm wavelength, where 6 nW power is generated by an average pump power of 30 mW in a 0.92 mm long device. The wavelength acceptance bandwidth of the SHG is as broad as 20 nm due to the low material dispersion of SiON waveguides. The waveguide structure provides a viable method for utilizing second order nonlinearity for light generation and manipulation in silicon photonic circuits. © 2013 American Institute of Physics.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know