PlumX Metrics
Embed PlumX Metrics

The competing spin orders and fractional magnetization plateaus of the classical Heisenberg model on Shastry-Sutherland lattice: Consequence of long-range interactions

Journal of Applied Physics, ISSN: 0021-8979, Vol: 113, Issue: 7
2013
  • 21
    Citations
  • 0
    Usage
  • 10
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    21
    • Citation Indexes
      21
  • Captures
    10

Article Description

The competing spin orders and fractional magnetization plateaus of the classical Heisenberg model with long-range interactions on a Shastry-Sutherland lattice are investigated using Monte Carlo simulations, in order to understand the fascinating spin ordering sequence observed in TmB and other rare-earth tetraborides. The simulation reproduces the experimental 1/2 magnetization plateau at low temperature by considering multifold long range interactions. It is found that more local long range interactions can be satisfied in the 1/2 plateau state than those in the 1/3 plateau state, leading to the stabilization of the extended 1/2 plateau. The phase boundaries in the magnetic field at zero temperature are determined, demonstrating the simulation results. When the energies of the Neel state and the collinear state are degenerated, the former state is more likely to be stabilized due to the competitions among the local collinear spin orders. The present work provides a comprehensive proof of the phase transitions to the Neel state at nonzero temperature, in complimentary to the earlier predictions for the Fe-based superconductors. © 2013 American Institute of Physics.

Bibliographic Details

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know