Lattice Boltzmann simulations of a single n-butanol drop rising in water
Physics of Fluids, ISSN: 1070-6631, Vol: 25, Issue: 4
2013
- 22Citations
- 43Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The motion of an n-butanol drop in water under the influence of gravity was numerically studied using a diffuse interface free energy lattice Boltzmann method. A pure two-liquid system without mass transfer between the phases was considered. A range of drop diameters of 1.0-4.0 mm covered the flow conditions. Most calculations were carried out in a moving reference frame. This allowed studying of long-term drop behavior in a relatively small computational domain. The capability of the method to capture the drop shape especially in the oscillating regime was demonstrated. For each drop diameter the evolution of the drop velocity in time, the terminal rise velocity and drop's shape were determined. The results were compared to experimental and numerical results and to semi-empirical correlations. The deviation of the simulated terminal velocity from other results is within 5% for smaller drops and up to 20% for large oscillating drops. It was shown that beyond the onset of shape oscillations the binary system converges towards a constant capillary number of 0.056. © 2013 AIP Publishing LLC.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know