Time evolution of polymer distribution functions from moment equations and maximum-entropy methods
Journal of Chemical Physics, ISSN: 0021-9606, Vol: 111, Issue: 17, Page: 8214-8224
1999
- 7Citations
- 4Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We use the maximum-entropy method to calculate the chain-length distribution as a function of time for cooperative polymerization models involving nucleation and growth. At least the first two moments of the distribution are required for the maximum-entropy method. To obtain the moments we use a generating function to give the moment rate equations which in general involves an infinite set of coupled differential equations which can be truncated to give a finite set by using various closure approximations. In particular we use the maximum-entropy method to treat the reversible growth of chains from a fixed concentration of initiators in which case the initial distribution is a sharp Poisson-type one that then evolves slowly to the very broad equilibrium distribution. For this model we find that there is a scaled time that reduces the time dependence of the moments to a universal set of asymptotic curves. © 1999 American Institute of Physics.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=0006506168&origin=inward; http://dx.doi.org/10.1063/1.480155; https://pubs.aip.org/jcp/article/111/17/8214/184153/Time-evolution-of-polymer-distribution-functions; http://aip.scitation.org/doi/10.1063/1.480155; https://aip.scitation.org/action/captchaChallenge?redirectUrl=https%3A%2F%2Faip.scitation.org%2Fdoi%2F10.1063%2F1.480155
AIP Publishing
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know