Quantized conductance and field-effect topological quantum transistor in silicene nanoribbons
Applied Physics Letters, ISSN: 0003-6951, Vol: 102, Issue: 17
2013
- 114Citations
- 72Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Silicene is a quantum spin-Hall insulator, which undergoes a topological phase transition into other insulators by applying external fields. We investigate transport properties of silicene nanoribbons based on the Landauer formalism. We propose to determine topological phase transitions by measuring the density of states and conductance. The conductance is quantized and changes its value when the system transforms into different phases. We show that a silicene nanoribbon near the zero energy acts as a field-effect transistor. This transistor is robust since the zero-energy edge states are topologically protected. Our findings open a way to future topological quantum devices. © 2013 AIP Publishing LLC.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know