Calculation of core-level excitation in some MAX-phase compounds
Journal of Applied Physics, ISSN: 0021-8979, Vol: 114, Issue: 2
2013
- 11Citations
- 17Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
We report first-principles spectroscopic calculation of core level excitations in five MAX-phase compounds. The spectra of Ti-K edges in Ti AlC and TiAlN, C-K edge in TiAlC, N-K edge in TiAlN, and Nb-K edge in NbAlC are calculated and found to be in good agreement with reported experimental measurements. Based on this agreement, the Al-K and Al-L edges in the same five phases plus the Cr-K and C-K edges in CrAlC and the C-K edge in Nb AlC are calculated as theoretical predictions. We further analyze the anisotropy in the calculated spectra to gain additional insights on the structure-properties relationships in these MAX-phase compounds. These results are further discussed in the context of the local atomic environments of the M, A, and X elements in MAX-phase compounds and in relation to their fundamental electronic structures. © 2013 AIP Publishing LLC.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know