PlumX Metrics
Embed PlumX Metrics

Frozen rotor approximation in the mixed quantum/classical theory for collisional energy transfer: Application to ozone stabilization

Journal of Chemical Physics, ISSN: 0021-9606, Vol: 139, Issue: 12, Page: 124301
2013
  • 8
    Citations
  • 0
    Usage
  • 7
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

A frozen-rotor approximation is formulated for the mixed quantum/classical theory of collisional energy transfer and ro-vibrational energy flow M. Ivanov and D. Babikov, [J. Chem. Phys. 134, 144107 (2011)]. Numerical tests are conducted to assess its efficiency and accuracy, compared to the original version of the method, where rotation of the molecule in space is treated explicitly and adiabatically. New approach is considerably faster and helps blocking the artificial ro-vibrational transitions at the pre- and post-collisional stages of the process. Although molecular orientation in space is fixed, the energy exchange between rotational, vibrational, and translational digresses of freedom still occurs, allowing to compute ro-vibrational excitation and quenching. Behavior of the energy transfer function through eight orders of magnitude range of values and in a broad range of ΔE is reproduced well. In the range of moderate -500 ≤ ΔE ≤ +500 cm the approximate method is rather accurate. The absolute values of stabilization cross sections for scattering resonances trapped behind the centrifugal threshold are a factor 2-to-3 smaller (compared to the explicit-rotation approach). This performance is acceptable and similar to the well-known sudden-rotation approximation in the time-independent inelastic scattering methods. © 2013 AIP Publishing LLC.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know