Frozen rotor approximation in the mixed quantum/classical theory for collisional energy transfer: Application to ozone stabilization
Journal of Chemical Physics, ISSN: 0021-9606, Vol: 139, Issue: 12, Page: 124301
2013
- 8Citations
- 7Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A frozen-rotor approximation is formulated for the mixed quantum/classical theory of collisional energy transfer and ro-vibrational energy flow M. Ivanov and D. Babikov, [J. Chem. Phys. 134, 144107 (2011)]. Numerical tests are conducted to assess its efficiency and accuracy, compared to the original version of the method, where rotation of the molecule in space is treated explicitly and adiabatically. New approach is considerably faster and helps blocking the artificial ro-vibrational transitions at the pre- and post-collisional stages of the process. Although molecular orientation in space is fixed, the energy exchange between rotational, vibrational, and translational digresses of freedom still occurs, allowing to compute ro-vibrational excitation and quenching. Behavior of the energy transfer function through eight orders of magnitude range of values and in a broad range of ΔE is reproduced well. In the range of moderate -500 ≤ ΔE ≤ +500 cm the approximate method is rather accurate. The absolute values of stabilization cross sections for scattering resonances trapped behind the centrifugal threshold are a factor 2-to-3 smaller (compared to the explicit-rotation approach). This performance is acceptable and similar to the well-known sudden-rotation approximation in the time-independent inelastic scattering methods. © 2013 AIP Publishing LLC.
Bibliographic Details
AIP Publishing
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know