Bauschinger effect in thin metal films: Discrete dislocation dynamics study
Journal of Applied Physics, ISSN: 0021-8979, Vol: 115, Issue: 1
2014
- 21Citations
- 42Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
The effects of dislocation climb on plastic deformation during loading and unloading are studied using a two-dimensional discrete dislocation dynamics model. Simulations are performed for polycrystalline thin films passivated on both surfaces. Dislocation climb lowers the overall level of the stress inside thin films and reduces the work hardening rate. Climb decreases the density of dislocations in pile-ups and reduces back stresses. These factors result in a smaller Bauschinger effect on unloading compared to simulations without climb. As dislocations continue to climb at the onset of unloading and the dislocation density continues to increase, the initial unloading slope increases with decreasing unloading rate. Because climb disperses dislocations, fewer dislocations are annihilated during unloading, leading to a higher dislocation density at the end of the unloading step. © 2014 AIP Publishing LLC.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know