A simple method for controllable solution doping of complete polymer field-effect transistors
Applied Physics Letters, ISSN: 0003-6951, Vol: 104, Issue: 15
2014
- 25Citations
- 55Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Controllable p-type doping of both poly(3-hexylthiophene) (P3HT) and poly(triarylamine) (PTAA) organic field effect transistors (OFETs) was achieved by immersing complete top-contact OFETs in a solution of 2,3,5,6-tetrafluoro-7, 7,8,8-tetracyanoquinodimethane (F4-TCNQ) in acetone. As this method is applied to complete devices, it has a greater utility than methods involving doping of the solution prior to film deposition as it allows separation of the device processing and doping steps, facilitating the use of optimal processing conditions at each stage. It was found that by varying immersion time and the concentration of the dopant solution, it was possible to vary the threshold voltage for a P3HT OFET by over 30V. Although PTAA devices are less sensitive to oxidation by F4-TCNQ than OFETs using P3HT, they can also be controllably doped by this method up to a threshold voltage of +12 V. © 2014 AIP Publishing LLC.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84899637500&origin=inward; http://dx.doi.org/10.1063/1.4871096; https://pubs.aip.org/apl/article/104/15/153304/131202/A-simple-method-for-controllable-solution-doping; http://scitation.aip.org/content/aip/journal/apl/104/15/10.1063/1.4871096
AIP Publishing
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know