Plaque and arterial vulnerability investigation in a three-layer atherosclerotic human coronary artery using computational fluid-structure interaction method
Journal of Applied Physics, ISSN: 1089-7550, Vol: 116, Issue: 6
2014
- 48Citations
- 27Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Coronary artery disease is the common form of cardiovascular diseases and known to be the main reason of deaths in the world. Fluid-Structure Interaction (FSI) simulations can be employed to assess the interactions of artery/plaque and blood to provide a more precise anticipation for rupture of arterial tissue layers and plaque tissues inside an atherosclerotic artery. To date, the arterial tissue in computational FSI simulations has been considered as a one-layer structure. However, a single layer assumption might have deeply bounded the results and, consequently, more computational simulation is needed by considering the arterial tissue as a three-layer structure. In this study, a three-dimensional computational FSI model of an atherosclerotic artery with a three-layer structure and different plaque types was established to perform a more accurate arterial wall/plaque tissue vulnerability assessment. The hyperelastic material coefficients of arterial layers were calculated and implemented in the computational model. The fully coupled fluid and structure models were solved using the explicit dynamics finite element code LS-DYNA. The results revealed the significant role of plaque types in the normal and shear stresses induced within the arterial tissue layers. The highest von Mises and shear stresses were observed on the stiffest calcified plaque with 3.59 and 3.27 MPa, while the lowest von Mises and shear stresses were seen on the hypocellular plaque with 1.15 and 0.63 MPa, respectively. Regardless of plaque types, the media and adventitia layers were played protective roles by displaying less stress on their wall, whilst the intima layer was at a high risk of rupture. The findings of this study have implications not only for determining the most vulnerable arterial layer/plaque tissue inside an atherosclerotic coronary artery but also for balloon-angioplasty, stenting, and bypass surgeries. © 2014 AIP Publishing LLC.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know