Dependence of optimal spacing on applied field in ungated field emitter arrays
AIP Advances, ISSN: 2158-3226, Vol: 5, Issue: 8
2015
- 43Citations
- 13Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In ungated field emitter arrays, the field enhancement factor β of each emitter tip is reduced below the value it would have in isolation due to the presence of adjacent emitters, an effect known as shielding or screening. Reducing the distance b between emitters increases the density of emission sites, but also reduces the emission per site, leading to the existence of an optimal spacing that maximizes the array current. Most researchers have identified that this optimal spacing is comparable to the emitter height h, although there is disagreement about the exact optimization. Here, we develop a procedure to determine the dependence of this optimal spacing on the applied electric field. It is shown that the nature of this dependence is governed by the shape of the β(b) curve, and that for typical curves, the optimal value of the emitter spacing b decreases as the applied field increases.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know