Strong terahertz radiation generation by beating of two spatial-triangular beams in collisional magnetized plasma
Physics of Plasmas, ISSN: 1089-7674, Vol: 23, Issue: 5
2016
- 7Citations
- 10Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A scheme of terahertz (THz) radiation generation is proposed by beating of two spatial-triangular laser beams in plasma with a spatially periodic density when electron-neutral collisions have taken into account. In this process, the laser beams exert a ponderomotive force on the electrons of the plasma and impart the oscillatory velocity at the difference frequency in the presence of a static magnetic field which is applied parallel to the direction of the lasers. We show that higher efficiency and stronger THz radiation are achieved when the parallel magnetic field is used to compare the perpendicular magnetic field. The effects of beam width of lasers, collision frequencyeriodicity of density ripples, and magnetic field strength are analyzed for strong THz radiation generation. The THz field of the emitted radiations is found to be highly sensitive to collision frequency and magnetic field strength. In this scheme with the optimization of plasma parameters, the efficiency of order 21% is achieved.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know