PlumX Metrics
Embed PlumX Metrics

Tailoring magnetostriction sign of ferromagnetic composite by increasing magnetic field strength

Applied Physics Letters, ISSN: 0003-6951, Vol: 109, Issue: 8
2016
  • 44
    Citations
  • 0
    Usage
  • 18
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    44
    • Citation Indexes
      44
  • Captures
    18

Article Description

The unitary deformation of single-phase ferromagnets by a magnetic field, i.e., either positive or negative linear magnetostriction, allows only monotonous control. Here we report a proof-of-principle ferromagnetic composite FeGa, for which the magnetostriction sign changes from positive to negative by increasing the magnetic field strength. Based on the transformation from body-centered-cubic (BCC) to face-centered-cubic (FCC) phases in this binary system, FeGa composite is prepared by aging the BCC averaged precursor for 3 days at 803 K. Magnetic measurements indicate that the BCC phase exhibits smaller magnetocrystalline anisotropy constant than the FCC phase. The offset effect between BCC and FCC phases produces positive net magnetostriction at low magnetic fields but negative net magnetostriction at high magnetic fields. By tuning the field strength, such composites can mediate compressive and tensile strains to other functional materials, e.g., piezoelectric material or optic-fibers, which is beneficial to design multifunctional devices.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know