Magneto-viscosity of hydrothermal synthesized Cu-Zn ferrite ferrofluids
AIP Advances, ISSN: 2158-3226, Vol: 7, Issue: 5
2017
- 4Citations
- 9Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The paraffin based ferrofluids were synthesized using the oleic acid coated Cu-Zn ferrite (CZF) nanoparticles of compositions CuZnFeO (CZF1) and CuZnFeO (CZF2) synthesized by hydrothermal process. The transmission electron micrographs (TEM) show the cubic shape particles of 4 to 10 nm and 4 to 18 nm size for CZF1 and CZF2 respectively. The nanoparticles show superparamagnetic behaviour. The viscosity increases with increase in magnetic field due to the formation of long chains of magnetic nanoparticles in ferrofluid. At higher flow rate, the magnetic chains break into smaller units and arrange along the flow direction. The flow curves show power law behavior. The size of magnetic nanoparticles influences the magneto-viscosity of the ferrofluids.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know