Ultraviolet photochemistry of 2-bromothiophene explored using universal ionization detection and multi-mass velocity-map imaging with a PImMS2 sensor
Journal of Chemical Physics, ISSN: 0021-9606, Vol: 147, Issue: 1, Page: 013914
2017
- 11Citations
- 23Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations11
- Citation Indexes11
- 11
- CrossRef10
- Captures23
- Readers23
- 23
Article Description
The ultraviolet photochemistry of 2-bromothiophene (CHSBr) has been studied across the wavelength range 265-245 nm using a velocity-map imaging (VMI) apparatus recently modified for multi-mass imaging and vacuum ultraviolet (VUV, 118.2 nm) universal ionization. At all wavelengths, molecular products arising from the loss of atomic bromine were found to exhibit recoil velocities and anisotropies consistent with those reported elsewhere for the Br fragment [J. Chem. Phys. 142, 224303 (2015)]. Comparison between the momentum distributions of the Br and CHS fragments suggests that bromine is formed primarily in its ground (P) spin-orbit state. These distributions match well at high momentum, but relatively fewer slow moving molecular fragments were detected. This is explained by the observation of a second substantial ionic product, C3H3+. Analysis of ion images recorded simultaneously for several ion masses and the results of high-level ab initio calculations suggest that this fragment ion arises from dissociative ionization (by the VUV probe laser) of the most internally excited CHS fragments. This study provides an excellent benchmark for the recently modified VMI instrumentation and offers a powerful demonstration of the emerging field of multi-mass VMI using event-triggered, high frame-rate sensors, and universal ionization.
Bibliographic Details
AIP Publishing
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know