Thermal assisted reset modelling in nickel oxide based unipolar resistive switching memory
Journal of Applied Physics, ISSN: 1089-7550, Vol: 121, Issue: 20
2017
- 13Citations
- 15Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This paper utilizes an analytical and a filament dissolution model to calculate the local temperature increase in conducting filaments (CFs) of pulsed laser ablated unipolar NiO resistive switching memory devices. Electrical current voltage characteristics indicate unipolar switching. The formation of NiO phases is confirmed from the X-ray diffraction study. Transmission electron microscopy confirms the polycrystalline nature of NiO films having a thickness of ∼20 nm. Electrothermal simulations based on the filament dissolution model are performed using COMSOL Multiphysics to model the CF rupture during the reset transition in the samples owing to the Joule heating effect. Obtained temperature profiles from the simulations are compared with the analytical model. Both the models corroborate with each other, allowing us to closely approximate the maximum temperature across the CF (T). This is the point corresponding to which the voltage applied across the cell (V) drives the device into the reset state. The effect of annealing temperature on the maximum temperature, reset voltage, and CF diameter of the device is also discussed. The CF diameter and area of the filament are precisely estimated from the simulation.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know