Plasmonic-enhanced graphene flake counter electrodes for dye-sensitized solar cells
Journal of Applied Physics, ISSN: 1089-7550, Vol: 121, Issue: 24
2017
- 8Citations
- 14Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A plasmonic-enhanced graphene flake counter electrode for dye-sensitized solar cells (DSSCs) was fabricated by immobilization of gold nanoparticles (NPs) on fluorine-doped tin oxide (FTO) glass and the deposition of a thin layer of graphene flakes. The graphene flakes, fabricated using a thermal plasma jet system, were very thin and pure and had good crystallinity. Even though their average size is larger than 100 nm, they had great dispersibility in common solvents. Their relatively large size and good crystallinity resulted in good conductivity, and their good dispersibility allowed us to fabricate relatively uniform films. The efficiency of the DSSC with a graphene flake/Au NP/FTO counter electrode was as much as 9.78%, which is higher than that with a conventional Pt/FTO (9.08%) or graphene flake/FTO (8.98%) counter electrode. Using cyclic voltammograms and electrochemical impedance spectroscopy and by measuring the incident photo-conversion efficiency, we proved that by the localized surface plasmon resonance effect of the Au NPs included between the graphene flakes and FTO, the charge-transfer resistance at the electrode/electrolyte interface was decreased. Consequently, the catalytic rate for I regeneration improved, and the energy conversion efficiency of the DSSC with a graphene flake/Au NP/FTO counter electrode improved.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know