Dynamics analysis of the hybrid powertrain under multi-frequency excitations with two time scales
AIP Advances, ISSN: 2158-3226, Vol: 8, Issue: 6
2018
- 7Citations
- 7Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Aiming at the dynamic behavior of hybrid powertrain under multi-frequency excitations with two time scales, this paper has carried out related research work. A nonlinear dynamic model of hybrid powertrain is established by taking engine excitation, load excitation and electromagnetic excitation into consideration. Considering the order gap between the excitation frequency and the natural frequency, slow variables are introduced to transform this model into a fast-slow model. Through introducing the De Moivre equation, slow variables are unified into a single one. The dynamic equations under different excitation frequencies and amplitudes are obtained. Bifurcation theory is applied to study the bifurcation behavior when the equilibrium point is unstable, and the conditions for the generation of fold bifurcation are derived. By means of numerical analysis, the influence of excitation frequency and amplitude on dynamics behavior is investigated by curve of equilibrium point, transformed phase portrait and time history. The simulation results show that fold bifurcation may lead to jumping phenomenon of the system trajectory and bursting oscillation is generated correspondingly. Additionally, the bifurcation characteristics of the hybrid powertrain may change with the excitation frequency and amplitude, making the pattern of bursting oscillation more complicated. The conclusion provides a reference for further analysis of dynamic behavior of hybrid powertrain.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85048611163&origin=inward; http://dx.doi.org/10.1063/1.5034201; https://pubs.aip.org/adv/article/8/6/065212/311060/Dynamics-analysis-of-the-hybrid-powertrain-under; http://aip.scitation.org/doi/10.1063/1.5034201; https://aip.scitation.org/action/captchaChallenge?redirectUrl=https%3A%2F%2Faip.scitation.org%2Fdoi%2F10.1063%2F1.5034201
AIP Publishing
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know