Artificial localized magnon resonances in subwavelength meta-particles
Applied Physics Letters, ISSN: 0003-6951, Vol: 113, Issue: 12
2018
- 19Citations
- 14Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The interaction between electromagnetic waves and objects is strongly affected by the shape and material composition of the latter. Artificially created materials, formed by a subwavelength structuring of their unit cells, namely metamaterials, can exhibit peculiar responses to electromagnetic radiation and provide additional powerful degrees of freedom to the scatterer design. In particular, negative material susceptibilities give rise to strong resonant interactions with deeply subwavelength particles. While the negative electrical permittivity of natural noble metals manifests itself in localized plasmon resonant oscillations, negative magnetic permeability materials are rare in nature. Here, the concept of artificial magnon resonance in subwavelength objects with effective negative permeability, designed via the metamaterial approach, is demonstrated. Strong localized oscillations of the magnetic fields within an array of split ring resonators, forming a sphere, hybridize in a collective mode of the structure. As a result, a high scattering cross section, exceeding that of a steel sphere with the same radius by four orders of magnitude, was demonstrated. Scatterers, based on tunable resonances within artificially created materials, can find use in a broad range of electromagnetic applications, including wireless communications, radars, RFID, internet of things hardware, and many others.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85053830733&origin=inward; http://dx.doi.org/10.1063/1.5047445; https://pubs.aip.org/apl/article/113/12/123505/1078274/Artificial-localized-magnon-resonances-in; http://aip.scitation.org/doi/10.1063/1.5047445; https://aip.scitation.org/doi/10.1063/1.5047445
AIP Publishing
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know