Thermoelectric transport at F TCNQ-silicon interface
APL Materials, ISSN: 2166-532X, Vol: 7, Issue: 2
2019
- 4Citations
- 12Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Hybrid organic-inorganic materials are among the latest class of materials proposed for thermoelectric applications. The organic-inorganic interface is critical in determining the effective transport properties of the hybrid material. We study the thermoelectric properties of the tetrafluoro-tetracyanoquinodimethane (F TCNQ)-silicon interface. Transfer of electrons from silicon to F TCNQ results in holes trapped within the screening length of the interface that can move parallel to the interface. We measure the response of these trapped charges to applied temperature differential and compare the thermoelectric transport properties of the silicon with and without F TCNQ. The results confirm the presence of interface charges and demonstrate an enhanced interface thermoelectric power factor. These outcomes of this study could be used in designing 3D hybrid structures with closely packed interfaces to replicate a bulk thermoelectric material.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know