Van der Waals density functional study of formic acid adsorption and decomposition on Cu(111)
Journal of Chemical Physics, ISSN: 1089-7690, Vol: 150, Issue: 15, Page: 154707
2019
- 20Citations
- 34Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We present a density functional theory study on the adsorption and decomposition mechanisms of monomeric formic acid (HCOOH) on a Cu(111) surface. We used Perdew-Burke-Ernzerhof (PBE) functional, PBE with dispersion correction (PBE-D2), and van der Waals density functionals (vdW-DFs). We found that the adsorption energy of HCOOH by using the PBE functional is smaller than the experimental value, while the PBE-D2 and vdW-DFs give better agreement with experimental results. The activation energies of decomposition calculated by using PBE-D2 and vdW-DFs are lower compared with desorption energies, seemingly in contradiction with experimental findings at room temperature, in which no decomposition of HCOOH on Cu(111) is observed when the surface is exposed to the gas phase HCOOH. We performed the reaction rate analysis based on the first-principles calculations for desorption and decomposition processes to clarify this contradiction. We found that the desorption of monomeric HCOOH is faster than that of its decomposition rate at room temperature because of a much larger pre-exponential factor. Thus, no decomposition of monomeric HCOOH should take place at room temperature. Our analysis revealed the competition between desorption and decomposition processes of HCOOH.
Bibliographic Details
AIP Publishing
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know