The Pauli principle and the confinement of electron pairs in a double well: Aspects of electronic bonding under pressure
Journal of Chemical Physics, ISSN: 0021-9606, Vol: 150, Issue: 20, Page: 204304
2019
- 13Citations
- 7Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations13
- Citation Indexes13
- 13
- CrossRef8
- Captures7
- Readers7
Article Description
It has become recently clear that chemical bonding under pressure is still lacking guiding principles for understanding the way electrons reorganize when their volume is constrained. As an example, it has recently been shown that simple metals can become insulators (aka electrides) when submitted to high enough pressures. This has lead to the general believe that "a fundamental yet empirically useful understanding of how pressure alters the chemistry of the elements is lacking" [R. J. Hemley, High Pressure Res. 30, 581 (2010)]. In this paper, we are interested in studying the role that the Pauli principle plays on the localization/delocalization of confined noninteracting electrons. To this end, we have considered the simple case of a 1-dimensional (1-D) double well as a confining potential, and the Electron Localization Function (ELF) has been used to characterize the degree localization/delocalization of the systems of noninteracting electrons. Then, we have systematically studied the topology of the ELF as a function of the double well parameters (barrier eight and wells distance) and of the number of electrons. We have found that the evolution of the ELF distributions has a good correspondence with the evolution of chemical bonding of atomic solids under pressure.
Bibliographic Details
AIP Publishing
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know