Engineering silk materials: From natural spinning to artificial processing
Applied Physics Reviews, ISSN: 1931-9401, Vol: 7, Issue: 1
2020
- 71Citations
- 85Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations71
- Citation Indexes71
- 71
- CrossRef45
- Captures85
- Readers85
- 85
Review Description
Silks spun by the arthropods are "ancient" materials historically utilized for fabricating high-quality textiles. Silks are natural protein-based biomaterials with unique physical and biological properties, including particularly outstanding mechanical properties and biocompatibility. Current goals to produce artificially engineered silks to enable additional applications in biomedical engineering, consumer products, and device fields have prompted considerable effort toward new silk processing methods using bio-inspired spinning and advanced biopolymer processing. These advances have redefined silk as a promising biomaterial past traditional textile applications and into tissue engineering, drug delivery, and biodegradable medical devices. In this review, we highlight recent progress in understanding natural silk spinning systems, as well as advanced technologies used for processing and engineering silk into a broad range of new functional materials.
Bibliographic Details
AIP Publishing
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know