Open system dynamics using Gaussian-based multiconfigurational time-dependent Hartree wavefunctions: Application to environment-modulated tunneling
Journal of Chemical Physics, ISSN: 0021-9606, Vol: 150, Issue: 22, Page: 224106
2019
- 10Citations
- 15Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A variational approach for the quantum dynamics of statistical mixtures is developed, which is based upon the representation of the natural states of the mixture in terms of hybrid Gaussian-based Multiconfiguration Time-Dependent Hartree (G-MCTDH) wavefunctions. The method, termed ρG-MCTDH, is combined with a treatment of dissipation and decoherence based on the nonstochastic open-system Schrödinger equations. The performance and the convergence properties of the approach are illustrated for a two-dimensional tunneling system, where the primary tunneling coordinate, represented by flexible single-particle functions, is resonantly coupled to a second harmonic mode, represented by Gaussian wave packets. The harmonic coordinate is coupled to the environment and two different processes are studied: (i) vibrational relaxation at zero temperature described by a master equation in the Lindblad form and (ii) thermalization induced by the Caldeira-Leggett master equation. In the second case, the evolution from a quantum tunneling regime to a quasistationary classical-limit distribution, driven by the heat bath, is visualized using a flux analysis.
Bibliographic Details
AIP Publishing
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know