PlumX Metrics
Embed PlumX Metrics

Open system dynamics using Gaussian-based multiconfigurational time-dependent Hartree wavefunctions: Application to environment-modulated tunneling

Journal of Chemical Physics, ISSN: 0021-9606, Vol: 150, Issue: 22, Page: 224106
2019
  • 10
    Citations
  • 0
    Usage
  • 15
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    10
    • Citation Indexes
      10
  • Captures
    15

Article Description

A variational approach for the quantum dynamics of statistical mixtures is developed, which is based upon the representation of the natural states of the mixture in terms of hybrid Gaussian-based Multiconfiguration Time-Dependent Hartree (G-MCTDH) wavefunctions. The method, termed ρG-MCTDH, is combined with a treatment of dissipation and decoherence based on the nonstochastic open-system Schrödinger equations. The performance and the convergence properties of the approach are illustrated for a two-dimensional tunneling system, where the primary tunneling coordinate, represented by flexible single-particle functions, is resonantly coupled to a second harmonic mode, represented by Gaussian wave packets. The harmonic coordinate is coupled to the environment and two different processes are studied: (i) vibrational relaxation at zero temperature described by a master equation in the Lindblad form and (ii) thermalization induced by the Caldeira-Leggett master equation. In the second case, the evolution from a quantum tunneling regime to a quasistationary classical-limit distribution, driven by the heat bath, is visualized using a flux analysis.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know