Anomalous plasma acceleration in colliding high-power laser-produced plasmas
Physics of Plasmas, ISSN: 1089-7674, Vol: 26, Issue: 9
2019
- 7Citations
- 27Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We developed an experimental platform for studying magnetic reconnection in an external magnetic field with simultaneous measurements of plasma imaging, flow velocity, and magnetic-field variation. Here, we investigate the stagnation and acceleration in counterstreaming plasmas generated by high-power laser beams. A plasma flow perpendicular to the initial flow directions is measured by laser Thomson scattering. The flow is, interestingly, accelerated toward the high-density region, which is opposite to the direction of the acceleration by pressure gradients. This acceleration is possibly interpreted by the interaction of two magnetic field loops initially generated by the Biermann battery effect, resulting in a magnetic reconnection forming a single field loop and additional acceleration by a magnetic tension force.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know