PlumX Metrics
Embed PlumX Metrics

Plasma kinetic effects on interfacial mix and burn rates in multispatial dimensions

Physics of Plasmas, ISSN: 1089-7674, Vol: 26, Issue: 6
2019
  • 20
    Citations
  • 0
    Usage
  • 8
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    20
    • Citation Indexes
      20
  • Captures
    8

Article Description

The physics of mixing in plasmas is of fundamental importance to inertial confinement fusion and high energy density laboratory experiments. Two-and three-dimensional (2D and 3D) particle-in-cell simulations with a binary collision model are used to explore kinetic effects arising during the mixing of plasma media. The applicability of the one-dimensional (1D) ambipolarity condition is evaluated in 2D and 3D simulations of a plasma interface with a sinusoidal perturbation. The 1D ambipolarity condition is found to remain valid in 2D and 3D, as electrons and ions flow together required for J = 0. Simulations of perturbed interfaces show that diffusion-induced total pressure imbalance and hydroflows flatten fine interface structures and drive rapid atomic mix. The atomic mix rate from a structured interface is faster than the ∼ t scaling obtained from 1D theory in the small-Knudsen-number limit. Plasma kinetic effects inhibit the growth of the Rayleigh-Taylor instability at small wavelengths and result in a nonmonotonic growth rate scaling with wavenumber k with a maximum at a low k value, much different from Agk (where A is the Atwood number and g is the gravitational constant) as expected in the absence of plasma kinetic effects. Simulations under plasma conditions relevant to MARBLE separated-reactant experiments on Omega and the NIF show kinetic modification of DT fusion reaction rates. With non-Maxwellian distributions and relative drifts between D and T ions, DT reactivity is higher than that inferred from rates using stationary Maxwellian distributions. Reactivity is also found to be reduced in the presence of finite-Knudsen-layer losses.

Bibliographic Details

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know