Large-area in plane molecular junctions by electrografting in 10 nm metallic nanotrenches
AIP Advances, ISSN: 2158-3226, Vol: 10, Issue: 2
2020
- 3Citations
- 12Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A key issue to push molecular devices toward a new range of applications is the ability to master large scale integration while preserving the device's functionality. Furthermore, providing extra tunability of the device by external parameters, such as gating in a transistor-like configuration, is highly suited for molecular electronics. Large area molecular junctions in crossbar geometry have demonstrated high yields and compatible and compatible fabrication with Complementary Metal Oxide Semiconductor (CMOS) technology. However, such a device's geometry favors diffusion of metallic atoms in the molecular layer and gives a very limited access to perform electrical or optical gating on molecules. In this work, we propose a new molecular junction architecture going behind these limits. We report a robust approach for the fabrication of molecular junctions based on the electrografting of a nanometer-thick molecular layer in high aspect ratio metallic nanotrenches. Nanotrenches are obtained by edge-mediated shadow deposition, resulting in laterally aligned electrodes with a 10.3 nm ± 3.3 nm average spacing along a 20 μm length. An in-solution electroreduction of diazonium salts is subsequently performed to fill the nanotrenches by a thin oligomeric layer of anthraquinone molecules. Electronic transport measurements performed at room temperature reveal the ability to produce stable molecular devices. Such a new junction's engineering offers the key advantages of high fabrication yield, great amenability for compact assembly, and reduced leakage current. The proposed architecture opens interesting perspectives to investigate fundamental and applied questions in molecular electronics, in which coupling of the molecules with external stimuli is required.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know