Optically tunable microresonator using an azobenzene monolayer
AIP Advances, ISSN: 2158-3226, Vol: 10, Issue: 4
2020
- 23Citations
- 17Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Photoswitchable organic molecules can undergo reversible structural changes with an external light stimulus. These optically controlled molecules have been used in the development of "smart" polymers, optical writing of grating films, and even controllable in vivo drug release. Being the simplest class of photoswitches in terms of structure, azobenzenes have become the most ubiquitous, well-characterized, and implemented organic molecular switches. Given their predictable response, they are ideally suited to create an all-optically controlled switch. However, fabricating a monolithic optical device comprised solely of azobenzene while maintaining the photoswitching functionality is challenging. In this work, we combine integrated photonics with optically switchable organic molecules to create an optically controlled integrated device. A silica toroidal resonant cavity is functionalized with a monolayer of an azobenzene derivative. After functionalization, the loaded cavity Q is above 10. When 450 nm light is coupled into cavity resonance, the azobenzene isomerizes from trans isomer to cis isomer, inducing a refractive index change. Because the resonant wavelength of the cavity is governed by the index, the resonant wavelength changes in parallel. At a probe wavelength of 1300 nm, the wavelength shift is determined by the duration and intensity of the 450 nm light and the density of azobenzene functional groups on the device surface, providing multiple control mechanisms. Using this photoswitchable device, resonance frequency tuning as far as 60% of the cavity's free spectral range in the near-IR is demonstrated. The kinetics of the tuning are in agreement with spectroscopic and ellipsometry measurements coupled with finite element method calculations.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know