Multi-target tracking and activity classification with millimeter-wave radar
Applied Physics Letters, ISSN: 0003-6951, Vol: 119, Issue: 3
2021
- 15Citations
- 23Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The millimeterwave radar has made possible high resolution tracking, activity classification, and vital signs detection, at higher precisions than is possible with most other wireless approaches. However, detecting multiple moving targets is a challenge, as dynamic scene with a lot of motion leads to clutter and noise, which interfere with the responses of targets of interest. We present a digital beamforming approach using the MIMO radar, with a range resolution of 6.4 cm and a Doppler resolution of 0.18 m/s, which reduces interference between closely neighboring targets. Thus, measurements of individual target micro-Doppler signatures are possible, even in the presence of multiple other moving targets, and the signatures are, thereby, used to train a Deep Neural Network (DNN) for activity classification. The DNN has been applied to recognize six exercise-based classes, correctly predicting with over 95% classification accuracy for all classes, but that is extendable to fall detection and other activities.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know