Evaluating the stability and activity of dilute Cu-based alloys for electrochemical CO reduction
Journal of Chemical Physics, ISSN: 1089-7690, Vol: 155, Issue: 11, Page: 114702
2021
- 13Citations
- 18Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations13
- Citation Indexes13
- 13
- CrossRef6
- Captures18
- Readers18
- 18
Article Description
Cu-based catalysts currently offer the most promising route to actively and selectively produce value-added chemicals via electrochemical reduction of CO (eCOR); yet further improvements are required for their wide-scale deployment in carbon mitigation efforts. Here, we systematically investigate a family of dilute Cu-based alloys to explore their viability as active and selective catalysts for eCOR through a combined theoretical-experimental approach. Using a quantum-classical modeling approach that accounts for dynamic solvation effects, we assess the stability and activity of model single-atom catalysts under eCOR conditions. Our calculations identify that the presence of eCOR intermediates, such as CO*, H*, and OH*, may dynamically influence the local catalyst surface composition. Additionally, we identify through binding energy descriptors of the CO*, CHO*, and OCCO* dimer intermediates that certain elements, such as group 13 elements (B, Al, and Ga), enhance the selectivity of C species relative to pure Cu by facilitating CO dimerization. The theoretical work is corroborated by preliminary testing of eCOR activity and selectivity of candidate dilute Cu-based alloy catalyst films prepared by electron beam evaporation in a zero-gap gas diffusion electrode-based reactor. Of all studied alloys, dilute CuAl was found to be the most active and selective toward C products like ethylene, consistent with the theoretical predictions. We attribute the improved performance of dilute CuAl alloys to more favorable dimerization reaction energetics of bound CO species relative to that on pure Cu. In a broader context, the results presented here demonstrate the power of our simulation framework in terms of rational catalyst design.
Bibliographic Details
AIP Publishing
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know