Understanding the origin of mobility enhancement in wedge-shaped c-GaN nanowall networks utilizing spectroscopic techniques
Journal of Applied Physics, ISSN: 1089-7550, Vol: 132, Issue: 19
2022
- 5Citations
- 9Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Recently, the electron mobility in wedge-shaped c-GaN nanowall networks has been estimated to cross the theoretical mobility limit for bulk GaN. Significant blue-shift of the bandgap has also been observed. Both the findings are explained in terms of two-dimensional electron gas (2DEG) formed at the central vertical plane of the walls due to the polarization charges at the two inclined faces. Carrier concentration and mobility have earlier been determined from thermoelectric power and conductivity measurements with the help of a statistical model. Due to the network nature of the system, direct measurements of these quantities from Hall experiments are not possible. Search for a better way to estimate mobility in this system thus becomes important. Since, strain can also lead to the blue-shift of the bandgap, it is also imperative to evaluate carefully the role of strain. Here, using Raman spectroscopy, we have estimated carrier concentration and mobility in these nanowall networks with varied average tip-widths. Depth distribution of strain and luminescence characteristics are also studied. The study reveals that strain has no role in the bandgap enhancement. Moreover, the electron mobility, which is determined from the lineshape analysis of the A1(LO)-plasmon coupled mode in Raman spectra, has been found to be significantly higher than the theoretical limit of mobility for bulk GaN for the same electron concentration. These results thus corroborate the picture of polarization induced vertical 2DEG formation in these walls as predicted theoretically.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know