Significant regulation of stress on the contribution of optical phonons to thermal conductivity in layered LiZrCl: First-principles calculations combined with the machine-learning potential approach
Applied Physics Letters, ISSN: 0003-6951, Vol: 121, Issue: 17
2022
- 16Citations
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The layered solid electrolyte Li2ZrCl6 and Li metal electrodes have a very good contact stability, but the thermal transport properties of Li2ZrCl6 are still unclear. Here, we systematically study the intrinsic lattice thermal conductivity (κp) of Li2ZrCl6 using the machine-learning potential approach based on first-principles calculations combined with the Boltzmann transport theory. The results show that the κp of Li2ZrCl6 at room temperature is 3.94 W/mK along the in-plane (IP) direction and 1.05 W/mK along the out-plane (OP) direction, which means that the κp is significantly anisotropic. In addition, under the compressive stress in the OP direction, the κp evolution along the IP and OP directions exhibits completely different trends, because the stress has a significant regulatory effect on the contribution of optical phonons to κp. With the increase in stress, the κp in the IP direction monotonically decreases, while the κp in the OP direction increases by a factor of 2.2 under a compressive strain of 13%. This is because the contribution of low-frequency optical phonons to κp in the IP direction is as high as 58% when no stress is applied, and this contribution is significantly suppressed with increasing compressive strain. However, the contribution of optical phonons in the OP direction to the κp increases with the increase in stress. Our results reveal the thermal transport properties of Li2ZrCl6 and the effect of the compressive strain on the κp of Li2ZrCl6, thereby providing a reference for the use of Li2ZrCl6 in Li-metal batteries.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know