Active sampling for neural network potentials: Accelerated simulations of shear-induced deformation in Cu-Ni multilayers
Journal of Chemical Physics, ISSN: 1089-7690, Vol: 158, Issue: 11, Page: 114103
2023
- 3Citations
- 3Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Neural network potentials (NNPs) can greatly accelerate atomistic simulations relative to ab initio methods, allowing one to sample a broader range of structural outcomes and transformation pathways. In this work, we demonstrate an active sampling algorithm that trains an NNP that is able to produce microstructural evolutions with accuracy comparable to those obtained by density functional theory, exemplified during structure optimizations for a model Cu-Ni multilayer system. We then use the NNP, in conjunction with a perturbation scheme, to stochastically sample structural and energetic changes caused by shear-induced deformation, demonstrating the range of possible intermixing and vacancy migration pathways that can be obtained as a result of the speedups provided by the NNP. The code to implement our active learning strategy and NNP-driven stochastic shear simulations is openly available at https://github.com/pnnl/Active-Sampling-for-Atomistic-Potentials.
Bibliographic Details
AIP Publishing
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know