Exploring three-body fragmentation of acetylene trication
Journal of Chemical Physics, ISSN: 1089-7690, Vol: 158, Issue: 7, Page: 074302
2023
- 3Citations
- 3Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The three-body breakup of [C2H2]3+ formed in collision with Xe9+ moving at 0.5 atomic units of velocity is studied by using recoil ion momentum spectroscopy. Three-body breakup channels leading to (H+, C+, CH+) and (H+, H+, C2+) fragments are observed in the experiment and their kinetic energy release is measured. The breakup into (H+, C+, CH+) occurs via concerted and sequential modes, whereas the breakup into (H+, H+, C2+) shows only the concerted mode. By collecting events coming exclusively from the sequential breakup leading to (H+, C+, CH+), we have determined the kinetic energy release for the unimolecular fragmentation of the molecular intermediate, [C2H]2+. By using ab initio calculations, the potential energy surface for the lowest electronic state of [C2H]2+ is generated, which shows the existence of a metastable state with two possible dissociation pathways. A discussion on the agreement between our experimental results and these ab initio calculations is presented.
Bibliographic Details
AIP Publishing
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know