Influence of thermodynamic effects on rotor-stator cavity flow in liquid oxygen turbopump
Physics of Fluids, ISSN: 1089-7666, Vol: 35, Issue: 2
2023
- 4Citations
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations4
- Citation Indexes4
- CrossRef1
- Mentions1
- News Mentions1
- 1
Most Recent News
Xi'an Jiaotong University Researcher Updates Knowledge of Fluids Physics (Influence of thermodynamic effects on rotor-stator cavity flow in liquid oxygen turbopump)
2023 FEB 24 (NewsRx) -- By a News Reporter-Staff News Editor at NewsRx Life Science Daily -- Investigators publish new report on fluids physics. According
Article Description
Thermodynamic effects of the cryogenic medium have not been researched adequately for the accurate solution of the turbopump axial thrust, which is a key technique for the reusable rocket engine. In this paper, a liquid oxygen turbopump was chosen to reveal the influence of thermodynamic effects. Experimental tests using liquid nitrogen were carried out to verify the numerical model, and the numerical results under liquid oxygen were discussed to reveal the thermodynamic effects. The results show that the head coefficients and the efficiencies decrease under all operating conditions due to the alterations of the physical properties caused by the thermodynamic effects of the cryogenic medium. The total axial thrusts decrease in the range of 1.63% to 3.22%, and the maximum variations of the axial thrust acting on the impeller shroud and hub are 2.96% and 2.69%, separately, owing to the divergences of the cavity structure. The entropy generation rate was chosen to analyze the power loss, and the minimum deviation caused by the thermodynamic effects is 5.01% at the normal condition; the distributions of the entropy generation rate in the rotor-stator cavities are obviously changed due to the addition of the thermodynamic effects. The new omega method was selected to compare the vortex distribution. The vortex strength changes slightly, owing to the reduction of the medium viscosity caused by the temperature rise. It is critical to consider the thermodynamic effects of cryogenic media for accurately calculating the axial thrust of a high power-density turbopump.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know