A laser-based system to heat nuclear fuel pellets at high temperature
Review of Scientific Instruments, ISSN: 1089-7623, Vol: 94, Issue: 10
2023
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures2
- Readers2
Article Description
Annealing tests are of utmost importance in nuclear fuel research, particularly to study the thermophysical properties of the material, microstructure evolution, or the released gas as a function of temperature. As an alternative to conventional furnace or induction annealing, we report on a laser-heating experiment allowing one to heat a nuclear fuel pellet made of uranium dioxide, UO, or potentially other nuclear fuel pellets in an isothermal and controlled manner. For that purpose, we propose to use an indirect heating method based on a two compartment tungsten crucible, one containing the sample and the other acting as a laser susceptor for efficient and homogeneous heating of the assembly. With this concept, we demonstrate the heating of UO samples up to 1500 °C at a maximum heating rate of 30 °C/s with the use of two 500 W lasers. The system is, however, scalable to higher heating rates or higher temperatures by increasing the laser power up to few kW. The experiment has been designed to heat a pressurized water reactor fuel pellet, but the concept could be easily applied to other sample geometries or materials.
Bibliographic Details
AIP Publishing
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know