Experimental and numerical investigation on the wake flow and vortex shedding of a rotating circular cylinder
Physics of Fluids, ISSN: 1089-7666, Vol: 35, Issue: 7
2023
- 14Citations
- 8Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
When fluid passes through a still cylinder, alternate shedding vortices are formed on the two sides of the cylinder in the wake. Regarding a rotating circular cylinder, the rotation can affect the wake flow and vortex shedding pattern. To investigate the wake flow and surface pressure characteristics of a rotating cylinder at different rotational speeds, wind tunnel tests and numerical simulation methods through Fluent were used. The dimensionless rotational speed was discussed for its impact on the vortex shedding intensity and pattern. Additionally, the correlation between the cylinder surface wind pressure and the vortex shedding pattern was analyzed. The results of this study provide useful insights into the mechanisms underlying the vortex shedding phenomenon and the effects of rotational speed on the wake flow and surface pressure of a rotating cylinder. The results show that an increase in the dimensionless rotational speed will change the characteristics of the wind pressure distribution, leading to the variation in aerodynamic coefficients. On the other hand, the vortex shedding characteristics of the wake flow will also be affected, with changes in the vortex shedding pattern and direction, thereby changing the characteristics of the wake deviation angle and correlation. Based on the analysis of wake flow speed power spectrum characteristics and the Reynolds number effect, the mechanism of the vortex shedding change caused by flow transitions is speculated and verified by numerical simulation of the vorticity field.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know