Jetting to dripping in compound liquid jets falling under gravity
Physics of Fluids, ISSN: 1089-7666, Vol: 35, Issue: 9
2023
- 2Citations
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In recent years, there has been a substantial growth in technologies, which exploits the disintegration of a compound thread of fluid to produce compound droplets or capsules. In many cases, careful control of the relevant operating and material parameters can determine a range of features, including capsule sizes, production rates, and wastage. In this paper, we investigate the transition between jetting and dripping of a compound inviscid liquid jet falling under gravity in a surrounding gas. We derive an analytical expression for the dispersion relation, which takes into account the non-uniform nature of the jet, which we then solve numerically utilizing the cusp map method and its significant reduction in computational effort required in identifying saddle points of the dispersion relation. Particular attention is paid to investigating the effects of the inner-to-outer surface tension ratio σ and initial jet radii, χ, as well as the influence of gravity on critical Weber numbers, We (which mark the transition between jetting and dripping). Our results provide the convective to absolute instability boundary for a number of different parameter values.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know