Thermodynamic analysis of anomalous region, critical point, and transition from subcritical to supercritical states: Application to van der Waals and five real fluids
Physics of Fluids, ISSN: 1089-7666, Vol: 36, Issue: 2
2024
- 2Citations
- 3Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
All fluids exhibit large property-variations near the critical point in a region identified as the anomalous state. The anomaly starts in the liquid and extends well into the supercritical state, which can be identified thermodynamically using the Gibbs free energy (g). The specific heat, isobaric expansion, and isothermal compressibility parameters governing the transitions are: (c/T), (vβ), and (vκ), rather c, β, and κ. They are essentially the second-order derivatives of g and have two extrema (minimum, maximum); only maxima reported ever. When applied to the van der Waals fluid, these extrema exhibit closed loops on the phase-diagram to satisfy d 3 g = 0 and map the anomalous region. The predicted liquid-like to gas-like transitions are related to the ridges reported earlier, and the Widom delta falls between these loops. Evidently, in the anomalous region, both the liquid and the supercritical fluid need to be treated differently. Beyond the anomalous states, the supercritical fluids show monotonic, gradual changes in their properties. The analysis for argon, methane, nitrogen, carbon dioxide, and water validates the thermodynamic model, supports the stated observations, and identifies their delimiting pressures and temperatures for the anomalous states. It also demonstrates the applicability of the law of corresponding states. Notably, the critical point is a state where d 3 g = 0, the anomaly in the fluid's properties/behavior is maximal, and the governing parameters approach infinity. Also the following are presented: (a) the trajectory of the liquid-vapor line toward the melt-solid boundary and (b) a modified phase diagram (for water) exhibiting the anomalous region.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know