Direct visualization of laser-driven dynamic fragmentation in tin by in situ x-ray diffraction
Matter and Radiation at Extremes, ISSN: 2468-080X, Vol: 9, Issue: 5
2024
- 1Citations
- 2Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We present a novel method for investigating laser-driven dynamic fragmentation in tin using in situ X-ray diffraction. Our experimental results demonstrate the feasibility of the method for simultaneously identifying the phase and temperature of fragments through analysis of the diffraction pattern. Surprisingly, we observe a deviation from the widely accepted isentropic release assumption, with the temperature of the fragments being found to be more than 100 K higher than expected, owing to the release of plastic work during dynamic fragmentation. Our findings are further verified through extensive large-scale molecular dynamics simulations, in which strain energies are found to be transferred into thermal energies during the nucleation and growth of voids, leading to an increase in temperature. Our findings thus provide crucial insights into the impact-driven dynamic fragmentation phenomenon and reveal the significant influence of plastic work on material response during shock release.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know